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Received 3 January 1996

Abstract. We study the critical properties of the weakly disordered two-dimensional Ising and
Baxter models in terms of the renormalization group (RG) theory generalized to take into account
replica symmetry breaking (RSB) effects. Recently it has been shown that the traditional replica-
symmetric RG flows in the dimensionD = 4−ε are unstable with respect to the RSB potentials
and a new spin-glass type critical phenomena has been discovered (Dotsenko Vik S, Harris B,
Sherrington D and Stinchbombe R 1995J. Phys. A: Math. Gen.28 3093; Dotsenko Vik S and
Feldman D E 1995J. Phys. A: Math. Gen.28 5183). In contrast, here it is demonstrated that in
the considered two-dimensional systems the renormalization-group flows arestablewith respect
to the RSB modes. It is shown that the solution of the renormalization group equations with
arbitrary starting RSB coupling matrix exhibits asymptotic approach to the traditional replica-
symmetric ones. Thus, to leading order the non-perturbative RSB degrees of freedom do not
affect the critical phenomena in the two-dimensional weakly disordered Ising and Baxter models
studied earlier.

The effects of weak quenched disorder on critical phenomena near the phase transition point
have been studied for many years [1–6]. According to the Harris criterion [1], the disorder
affects the critical behaviour only ifα, the specific heat exponent of the pure system, is
positive. In this case a new universal critical behaviour, with new critical exponents, is
established sufficiently close to the phase transition point for(T /Tc − 1) ≡ τ � τu ≡ u1/α

[2], whereu � 1 is the parameter which describes the strength of the disorder. In contrast,
whenα < 0, the disorder appears to be irrelevant to the critical behaviour.

Originally the modified critical behaviour was derived for the classicalφ4 model near
four dimensions [2], and later it was studied for the two-dimensional Ising [3], Baxter [4]
and Potts [5] models by various renormalization group (RG) techniques, and by numerical
simulations [6].

In dealing with quenched disorder the traditional approach is the replica method, and
in terms of replicas all the results obtained for the systems listed above correspond to
the so-called replica-symmetric (RS) solutions. Physically it means that only the unique
ground state is assumed to be relevant for the observable thermodynamics. The problem,
however, is that in the presence of quenched disorder there exist numerous local minimum
configurations separated by finite barriers, and in this case the direct application of the
traditional replica-symmetric RG scheme may be questioned.
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On the other hand, the Parisi replica symmetry breaking (RSB) scheme, which has been
developed specifically for dealing with disordered systems, exhibits numerous local minima
states (see, e.g., [7]). Recent studies show that besides the mean-field theory of spin-
glasses the RSB approach can also be generalized for situations where one has to deal with
fluctuations as well [8–10]. In [11] qualitative arguments were presented demonstrating the
mechanism by which summation over multiple local minima configurations could provide
additional non-trivial RSB interaction potentials for the fluctuating fields.

One can hope that such a type of generalized RG scheme self-consistently takes into
account the relevant degrees of freedom coming from the numerous local minima, and in
particular, the instability of the RS fixed point with respect to the RSB would indicate that
the multiplicity of the local minima is relevant for the critical properties in the fluctuation
region. And inversely, if the traditional RS RG flows turn out to be stable with respect to
the RSB modes, then it can be concluded that such non-perturbative degrees of freedom are
irrelevant for the critical behaviour in a considered system.

The first example of replica symmetry broken solutions in the renormalization group has
been suggested in [13] in the context of the 2D random fieldXY -model, where instability
of the RG flows with respect to the RSB modes has been discovered. Similar phenomena
has been observed in the weakly disordered classical ferromagnet (theφ4-theory) in the
dimensionD = 4 − ε [11]. Here the RSB degrees of freedom produce dramatic effects on
the asymptotic behaviour of the RG flows, such that for a general type of the RSB there
exist no stable fixed points, and the RG arrives in the strong coupling regime at the finite
scale (∼ exp(−1/u)) [12].

On the other hand, similar considerations for the weakly disordered 2D Potts model
shows that, although the traditional RS fixed point also turns out to be unstable, there exists
a stable non-trivial fixed point characterized by the continuous RSB structure of the coupling
matrix [14].

In this paper we report on the RSB solution for the two-dimensional Ising and Baxter
models with random bonds. We consider the models with spin couplings having small
fluctuations around a mean ferromagnetic value. This gives the possibility of studying the
model in the continuum limit, because one approaches sufficiently close to the critical point
before the randomness becomes relevant. For the two-dimensional Ising and Baxter models
this allows us to use the renormalization group based on the fermion representation.

In contrast to the previous studies, in the considered systems the RG flows turns out
to be stable with respect to RSB modes. The explicit solution of the corresponding RG
equations shows that for any starting RSB structure of the coupling matrix the asymptotic
solutions become replica-symmetric. It means that the RSB (‘non-perturbative’) degrees
of freedom appear to be irrelevant for the critical phenomena in these systems, and they
exhibit the usual replica symmetric critical behaviour which had been studied earlier [3, 4].

The Ising model

It is well known that the two-dimensional Ising model in the critical region is equivalent to
the problem of the free fermions [15]. The effect of the quenched disorder can be described
by the random contribution to the effective temperatureτ . Thus, the random bond Ising
model in the critical region can be reduced to the field theory with the following Lagrangian:

L[ψ ] = −1

2

∫
d2x [ψ̄ ∂̂ψ + (τ + δτ)ψ̄ψ ] (1)
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whereδτ is the Gaussian random variable with(δτ 2) = 2u � 1, andψ andψ̄ = iψσ̂y are
the two-component real fermion fields.

The averaging over quenched random variableδτ can be performed in terms of the
standard replica procedure. The resulting replica Lagrangian has the following form:

Ln[ψ ] = −
∫

d2x

[
1

2

n∑
a=1

ψ̄a(∂̂ + τ)ψa − 1

4

n∑
a,b=1

gabψ̄
aψaψ̄bψb

]
. (2)

In the usual replica-symmetric theory the coupling matrix does not depend on the replica
indices: gab = u. Then, in terms of the standard RG scheme one can easily calculate the
critical properties of the system, and in particular for leading singularity of the specific heat
one finds:C(τ) ∼ log log(1/|τ |) [3].

According to the discussion in the introductory part of this paper, in our present scenario
we assume that due to non-perturbative effects the replica symmetry in the coupling matrix
gab can be broken. In other words, the starting point of the further analysis is the assumption
that the matrixgab has the Parisi-type structure (see e.g. [7]).

The corresponding (one-loop) RG equations for the replica matrixgab and for the mass
parameterτ are

dgab
dξ

= 1

π

∑
c 6=a,b

gacgcb. (3)

d logτ

dξ
= 1

π

∑
b 6=1

g1b. (4)

whereξ is the standard RG rescaling parameter.
In terms of the Parisi RSB scheme [7] in the limitn → 0 the matrixga 6=b is parametrized

by the functiong(x) defined in the interval 06 x 6 1 (replica-symmetric situation
corresponds tog(x) = constant, independent ofx). According to the standard technique
of the Parisi RSB algebra [9] (see also [11],[12]) the equation (3) can be represented as
follows:

dg(x)

dξ
= − 1

π

[
xg2(x)+ 2g(x)

∫ 1

x

dy g(y)+
∫ x

0
dy g2(y)

]
(5)

The structure of this equation is similar to that for theφ4-theory with the broken replica
symmetry, and it can be solved following the method suggested in [12]. Simple calculations
yield

g′(x, ξ) =
g′(x, 0) exp

(
− 2
π

∫ ξ
0 dη ḡ(η)

)
[
1 + 1

π

∫ x
0 yg

′(y, 0) dy
∫ ξ

0 dη exp
(− 2

π

∫ η
0 dθ ḡ(θ)

)]2 (6)

g(0, ξ) = g(0, 0) exp

(
− 2

π

∫ ξ

0
ḡ(η) dη

)
(7)

whereg′(x, ξ) ≡ dg(x, ξ)/dx and ḡ(ξ) ≡ ∫ 1
0 g(x, ξ)dx.

Equations (6), (7) allow to study the large scale asymptotic behaviour of the
renormalized functiong(x, ξ) provided the starting function is given. Simple calculations
show that at any value ofx in the limit ξ → ∞ the derivative in (6) tends to zero
as [ξ(logξ)2]−1, while ḡ(ξ) ∼ ξ−1. It means that the asymptotic renormalized function
g(x, ξ → ∞) tends to become flat in the whole interval 0< x < 1). In other words,
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for any starting RSB functiong(x, ξ = 0) the asymptotic solution of the RG equation (5)
becomes replica-symmetric.

One can also easily check that slowly decaying corrections to the RS solution does not
affect the leading singularity of the specific heat. From equation (4) for the renormalized
temperature parameter one finds

τ(ξ) = τ(0) exp

(
− 1

π

∫ ξ

0
ḡ(η) dη

)
. (8)

Then, using equations (6), (7) and (8) one can derive the following closed form relation on
τ(ξ):

log

(
τ(0)

τ (ξ)

)
= g(0, 0)

π

∫ ξ

0
dη

(
τ(η)

τ (0)

)2

+ O

(√∫ ξ

0
dη

(
τ(η)

τ (0)

)2)
. (9)

In the asymptotic limitξ → ∞ one finally gets

τ(ξ) ∼ 1√
ξ

+ O

(
1√
ξ logξ

)
. (10)

which in the leading order coincides with the RS result. Correspondingly, the leading
singularity of the specific heat (which can be estimated asC(τ) ∼ ∫ ln(1/|τ |) dξ τ 2(ξ)) remains
the same as in the RS case [3] as well.

The Baxter model

The Baxter model [16] can be formulated in terms of two 2D Ising models coupled by
four-spin interactions. The strength of this coupling is described by parameterλ (the case
of λ = 0 corresponds to two independent 2D Ising models). The pure Baxter model
can be solved exactly and in particular, its specific heat exponent is proportional toλ:
Cpure(τ ) ∼ |τ |−λ/π (for |λ| � 1).

Similar to the weakly disordered 2D Ising system considered above, in the continuum
limit near the critical point the corresponding Baxter model can be described in terms of
the two-component complex fermion field:

L[ψ ] = −
∫

d2x

[
1

2
ψ̄ ∂̂ψ + 1

2
(τ + δτ(x))ψ̄ψ − 1

4
λ(ψ̄ψ)(ψ̄ψ)

]
. (11)

After averaging over the random functionδτ(x) one gets the following replica Lagrangian:

Ln[ψ ] = −
∫

d2x

[
1

2

n∑
a=1

ψ̄a(∂̂ + τ)ψa − 1

4

∑
a,b

gab(ψ̄
aψa)(ψ̄bψb)

]
. (12)

In the RS case for the replica coupling matrix one hasgab = λδab + u. The critical
properties of such system has been studied earlier [4], and it was shown that forλ > 0 (when
the specific heat of the pure system is divergent) the leading singularity of the specific heat
coincides with that of the random Ising model:C(τ) ∼ ln ln(1/|τ |). On the other hand, for
λ < 0 (when the specific heat of the pure system is finite), the singularity of the specific
heat changes to:C(τ) ∼ |τ |−λ∗/π , whereλ∗ = λ exp(−u/|λ|).

Here we study the situation when the coupling matrixgab has a general RSB Parisi
structure. The corresponding RG equations are

dgab
dξ

= − 1

π

{
gab(gaa + gbb)− 2

∑
c

gacgcb

}
(13)



Stability of the RG in the 2D random Ising and Baxter models 4335

d(ln τ)

dξ
= − 1

π

{
gaa − 2

∑
c

gac

}
. (14)

According to the standard technique of the Parisi RSB algebra, in the limitn → 0 the
matrix gab is parametrized in terms of its diagonal elementg̃ and the off-diagonal function
g(x). The replica symmetric situation corresponds to the caseg(x) = constant independent
of x. After simple algebra, instead of equations (13), (14) in the limitn → 0 one gets

d

dξ
g̃ = − 2

π

∫ 1

0
dx g2(x)

d

dξ
g(x) = 2

π

[
g̃g(x)− 2ḡg(x)−

∫ x

0
dy [g(y)− g(x)]2

]
d

dξ
(ln τ) = 1

π
(g̃ − 2ḡ)

(15)

whereḡ ≡ ∫ 1
0 dx g(x).

The solution of equations (15) can be represented in the same way as in the Ising case
considered above (cf equation (6)):

g′(x, ξ) =
g′(x, 0) exp

{
− 2
π

∫ ξ
0 dη (2ḡ(η)− g̃(η))

}
[
1 + 2

π

∫ x
0 yg

′(y, 0) dy
∫ ξ

0 dη exp
{− 2

π

∫ η
0 dθ (2ḡ(θ)− g̃(θ))

}]2 . (16)

Using the above equation one can easily study the asymptotic (forξ → ∞) behaviour
of the functiong(x, ξ). The behaviour of the solution depends on the sign of the starting
parameterg0 ≡ g̃(ξ = 0) − ḡ(ξ = 0) which corresponds to the initial couplingλ in the
replica symmetric case. We consider the two cases separately.

1. g0 > 0

The corresponding replica-symmetric RG equations have the following asymptotic solution
[4]:

gRS ' 2

π

[
1

ξ
− 1

ξ ln ξ

]
+ a

ξ(ln ξ)2

g̃RS ' 2

π

[
1

ξ
− 2

ξ ln ξ

]
+ b

ξ(ln ξ)2

(17)

wherea and b are constants. Then, using equation (16) for the RSB correction to these
solutions: g(x, ξ) = gRS(ξ) + gRSB(x, ξ) and g̃(ξ) = g̃RS(ξ) + g̃RSB(ξ), one immediately
finds that

g′
RSB(x, ξ) ∼ V (x)

ξ(ln ξ)2

g̃RSB(ξ) ∼ 1

ξ2(ln ξ)2

(18)

whereV (x) is a function which is defined by the starting RSB functiong(x, ξ = 0). This
means that on large scales the RSB deviations are vanishing in comparison with the RS
solution, and the asymptotical properties of the model are not affected by the starting RSB.
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2. g0 < 0

In this case the replica-symmetric RG trajectories arrive to the fixed point(g∗, g̃∗), which
depends on the initial coupling parametersg(ξ = 0) ≡ g(0) andg0 [4]

g̃∗ = −|g0| exp
[−g(0)/|g0|

]
g∗ = 0 (19)

Using equations (15) or (16) this fixed point can be easily shown to be also stable
with respect to general RSB deviations. In other words, the RG trajectories defined by
equations (15) arrive to the same fixed point(g̃∗, 0) as in the RS case.

In conclusion, we have studied the effects of the replica symmetry breaking in the
renormalization group for the 2D random Ising and Baxter models. We have found that the
traditional replica-symmetric renormalization group flows are stable with respect to the RSB
modes. Thus, unlike the other suggestions [17], we conclude that the effects of possible
non-perturbative degrees of freedom in the 2D random Ising and Baxter models must be
irrelevant for the critical behaviour studied earlier.
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